Clifford Bergman
Selected Reprints and Preprints


  1. Universal Algebra: Fundamentals and Selected Topics, Taylor & Francis, ix+308pp., August 2011.
  2. Algebraic Logic and Universal Algebra in Computer Science, edited with R. Maddux and D. Pigozzi, Lecture Notes in Computer Science, vol. 425, New York, Springer-Verlag, 1990.


  1. Quasisheffer operations and k-permutable algebras, pdf
  2. Universal Algebraic Methods for Constraint Satisfaction Problems, with William DeMeo, arxiv
  3. Introducing Boolean semilattices, in "Don Pigozzi on Abstract Algebraic Logic and Universal Algebra," Springer-Verlag, to appear   pdf
  4. Automorphism-primal algebras generate verbose varieties, Algebra Universalis, vol. 74 (2015), 117-122.   pdf   DOI 10.1007/s00012-015-0337-0.
  5. Commutative, idempotent groupoids and the constraint satisfaction problem, with David Failing, Algebra Universalis, vol. 73, no. 3-4 (2015), 391-417.   AU version complete manuscript, with appendix   DOI 10.1007/s00012-015-0323-6.
  6. Measuring bias in cyclic random walks, with S. Sethuraman, Missouri J. Math., 25 (2013), 195-212.   pdf
  7. Fully invariant and verbal congruence relations, with J. Berman, Algebra Universalis, 70 (2013), 71-94.   pdf
  8. An automatic, time-based, secure pairing protocol for passive RFID, with G. Amariucai and Y. Guan, Workshop on RFID Security--RFIDSec'11 (Amherst, MA, USA) June 2011.   pdf
  9. An artificial neural network for wavelet steganalysis, with J. Davidson and E. Bartlett, Optics and Photonics, Mathematical Methods in Pattern and Image Analysis, vol 5916, SPIE, 2005, 1-10.
  10. Unitary embedding for data hiding with the SVD, with J. Davidson, Security, Steganography and Watermarking of Multimedia Contents VII, SPIE, 2005.   pdf
  11. Computational complexity of generators and nongenerators in algebra, with G. Slutzki, Int. J. Algebra and Computation, 12 no. 5, (2002), 719-735.   pdf
  12. Computational complexity of some problems involving congruences on algebras, with G. Slutzki, Theoret. Comp. Sci., 270 (2002), 591-608.   pdf
    Extended abstract in Fifteenth Annual IEEE Symposium on Logic in Computer Science (LICS 15) IEEE Computer Society, 2000, 168-174.
  13. Complexity of some problems concerning varieties and quasivarieties of algebras, with G. Slutzki, SIAM J. Computing, 30 no. 2 (2000), 359-382.
    Extended abstract in 16th Symposium on Theoretical Aspects of Computer Science (STACS '99), Lecture Notes in Computer Science, v. 1563, Springer-Verlag, 1999, 163-172.   pdf
  14. Computational complexity of term-equivalence, with G. Slutzki, Int. J. Algebra and Computation, 9 no. 1,(1999), 113-128.   pdf
  15. Categorical equivalence of modes, with J. Berman, Discussiones Mathematicae, 19 (1999), 41-62.   pdf
  16. Algorithms for categorical equivalence, with J. Berman, Math. Struc. Comp. Sci., 8 (1998), 1-15.   pdf
  17. Categorical equivalence of algebras with a majority term, Algebra Universalis, 40 (1998), 149-175.   pdf
  18. Morita equivalence of almost-primal clones, with J. Berman, J. Pure Appl. Algebra, 108 (1996), 175-201.   pdf
  19. Subquasivarieties of regularized varieties, with A. Romanowska, Algebra Universalis, 36 (1996), 536-563.   pdf
  20. Structural completeness in algebra and logic, Algebraic Logic (H. Andreka, D. Monk, and I. Nemeti, eds.)
  21. Minimal varieties and quasivarieties, with R. McKenzie, J. Australian Math. Soc., Series A 48 (1990), 133-147.
  22. Non-axiomatizability of the amalgamation class of modular lattice varieties, Order, 6 (1989), 49-58.
  23. Residually small modular varieties with AP, Houston J. Math., 14 (1988), 451-464.
  24. On the relationship of AP, RS, and CEP in congruence modular varieties, II, with R. McKenzie, Proc. AMS, 103 (1988), 335-343.  pdf
  25. Saturated algebras in filtral varieties, Algebra Universalis, 24 (1987), 101-110.
  26. On the relationship of AP, RS, and CEP in modular varieties, Algebra Universalis, 22 (1986), 164-171.
  27. Amalgamation classes of some distributive varieties, Algebra Universalis, 20 (1985), 143-166.
  28. Deductive varieties of modules and related objects, with L. Hogben, Trans. AMS, 289 (1985), 303-320.
  29. The amalgamation class of a discriminator variety is finitely axiomatizable, Universal Algebra and Lattice Theory (R. Freese and O. Garcia, eds.) Springer-Verlag, New York, 1983. Lecture Notes in Mathematics, vol. 1004, 1-9.   pdf
  30. How to cancel a linearly ordered exponent, with R. McKenzie and Zs. Nagy, Colloquia Mathematica Societatis Janos Bolyai, 29. North-Holland Publishing Co., Amsterdam, 1977, 87-93.

Miscellaneous Notes