The Discrete Logarithm Problem

Let p be a prime, and $g \in \mathbb{Z}_p^*$ of large order.

In particular g is \textit{primitive} if $\text{ord}_p g = p - 1$.

The function $x \mapsto g^x \mod p$
seems to be one-way. In other words,

\textit{given b, $g \in \mathbb{Z}_p^*$, it is difficult to find an integer x such that $b \equiv g^x \pmod{p}$}.

© 2011 Clifford Bergman
\[b \equiv g^x \pmod{p} \]

Note that, given \(b \), \(x \) is unique modulo \(\operatorname{ord}_p g \).
Write \(x = \log_g b \),

the \textit{discrete log} of \(b \) to the base \(g \).
The El Gamal Cryptosystem

Choose a prime p, an element $g \in \mathbb{Z}_p^*$ of large order, and an integer a. Let $b = g^a \% p$.

Public Key: (p, g, b)

Private Key: (p, a).

Encryption: Choose a (secret) random integer k.

$E(m) = (g^k \% p, mb^k \% p)$. \hspace{1cm} (m \in \mathbb{Z}_p^*)

Decryption: $D(y, z) = z(y^a)^{-1} \% p$.

© 2011 Clifford Bergman
Does it work? I.e., does $D(E(m)) = m$?

$E(m) = (g^k \% p, mb^k \% p)$

$D(g^k, mb^k) \equiv_p mb^k \cdot (g^{ak})^{-1} \equiv_p m \cdot g^{ak} \cdot g^{-ak} \equiv_p m$.
Notes

- \(E(m) = (g^k \mod p, mb^k \mod p) \)
 Thus \(E(m) \) is twice as long as \(m \).

- Because of \(k \), every message has multiple encryptions.

- We may as well choose \(a \leq \text{ord}_p g \)
 Thus \(\text{ord}_p g \) should be very large to preclude exhaustive search.

- \(\text{ord}_p g \) is a divisor of \(p - 1 \) (Lagrange).

- Unlike in RSA, \(p \) and \(g \) can be shared by everybody.

\(c \odot 2011 \) Clifford Bergman
Two schools of thought on the choice of g

- g a primitive element mod p (i.e. make ord_g as large as possible)
- Choose g with $\text{ord}_p(g) = q$ a large prime [necessarily, $q \mid (p - 1)$]
Security of ElGamal

Obviously, if the discrete log problem for p can be solved, then ElGamal would be compromised.

Converse is open.

Note that it is important for the sender to keep k secret.
ElGamal Signatures

p a prime, $g \in \mathbb{Z}_p^*$ of large order n, $a < n$ $b = g^a \mod p$.

Public Key: (p, g, b)
Private Key: (p, a)

For message $m < n$

Signature: pick a random $k < n$. Let

$$y = g^k \mod p$$

$$S(m) = (y, (m - ay)k^{-1} \mod n)$$

Verification: $V(y, z) : b^y y^z \mod p = g^m \mod p$.
As before, \(p \) and \(g \) can be shared

In practice: given a (long) message \(M \), hash function \(H \). let \(m = H(M) \). Sign \(m \).
Send \(M \) together with \(S(m) \) [and \(H \)].

Every message has multiple valid signatures
Forging a signature

Wish to forge Bob’s signature on message m. Need to construct (y, z) such that

$$b^y y^z \equiv g^m \pmod{p}$$

Pick y, solve for z:
$$z = \log_y (g^m b^{-y})$$

Pick z, solve for y:
$$b^y y^z \equiv g^m$$
Security problems

- If $S(m) = (y, z)$ is a valid signature, and the value of k becomes known, then a is compromised.

\[
z \equiv (m - ay)k^{-1} \pmod{n} \implies a = (m - zk)y^{-1} \mod{n}.
\]

But what if y is not invertible modulo n?
If messages $m_1 \neq m_2$ are signed using the same k, then k is compromised.