The purpose of these problems is to demonstrate that you understand the number-theoretic algorithms presented in class. You may use a computer for these problems, but you may only use the basic arithmetic operations of addition, subtraction, multiplication, division, and reduction modulo \(n \). Show enough steps that I can see that you know how the procedures work.

Do any 6 problems.

1. (a) Use the Euclidean algorithm to find the greatest common divisor of \(262458 \) and \(18564 \).

 (b) Find a positive integer \(x \) such that \(6851x \equiv 1 \pmod{110934} \).

2. Compute \(58^{36} \pmod{402} \). [No built-in exponentiation allowed.]

3. Compute \(\phi(10!) \).

4. Solve the system of equivalences

 \[
 x \equiv 68 \pmod{73} \\
 x \equiv 24 \pmod{71} \\
 x \equiv 19 \pmod{60}
 \]

5. (a) List the elements of the cyclic subgroup \(\langle 7 \rangle \) of \(\mathbb{Z}_{43}^* \).

 (b) Use part (a) to compute \(7^{2500} \pmod{43} \).

6. Let \(a, b \) and \(c \) be positive integers.

 (a) Show that \(2^a \equiv 2^{a\pmod{c}} \pmod{2^c - 1} \). [Hint: if \(a = qc + r \) then \(2^a = (2^c)^q \cdot 2^r \).]

 (b) Show that \(\gcd(2^a - 1, 2^b - 1) = 2^{\gcd(a,b)} - 1 \). [Hint: use Euclid’s lemma and part (a).]

 (c) Find 4 pairwise relatively prime numbers, each of which has at least 60 binary digits. (You do not have to represent the numbers using binary digits or decimal digits.)

 (Remark: if you can’t do one of the parts of this problem, you may still use the result of that part to do the next part.)

7. Let \(n \) be a positive integer. Prove the assertion made in class that if \(a, b \in \mathbb{Z}_n^* \), then \(ab \in \mathbb{Z}_n^* \). In other words, if \(\gcd(a, n) = \gcd(b, n) = 1 \) then \(\gcd(ab, n) = 1 \). [Hint: slide 4.3.]