Cospectral graphs for the normalized Laplacian

Steve Butler\(^1\)
(joint work with Jason Grout)

\(^1\)Department of Mathematics
University of California Los Angeles
www.math.ucla.edu/~butler

2010 SIAM Conference on Discrete Mathematics
17 June 2010
Spectral graph theory

Graphs can be associated with matrices. By studying the eigenvalues of these matrices we can understand something about the graph, different matrices can give us different information about the graph.
Graphs can be associated with matrices. By studying the eigenvalues of these matrices we can understand something about the graph, different matrices can give us different information about the graph.

\[A \] The adjacency matrix. 1 indicates an edge, 0 a non-edge.

\[L \] The (combinatorial) Laplacian. \(L = D - A \), where \(D \) is diagonal degree matrix.

\[\mathcal{L} \] The normalized Laplacian. \(\mathcal{L} = D^{-1/2}LD^{-1/2} \).

(We will assume that our graphs are simple, no loops, no multiple edges and also no isolated vertices.)
Using spectrum to test for connectedness

A The adjacency matrix cannot determine if a graph is connected only by the spectrum. For example the following graphs are cospectral:

\[\begin{align*}
\quad & \quad \\
\end{align*} \]

L The (combinatorial) Laplacian can determine the number of connected components, it is equal to the multiplicity of 0 as an eigenvalue.

L The normalized Laplacian can determine the number of connected components, it is equal to the multiplicity of 0 as an eigenvalue.
Using spectrum to test for being bipartite

An adjacency matrix can determine if a graph is bipartite, namely a graph is bipartite if and only if the spectrum is symmetric around 0.

The (combinatorial) Laplacian cannot determine if a graph is bipartite only by the spectrum. For example the following graphs are cospectral:

\[
\begin{align*}
\text{A} & \quad \text{A} & \\
\text{L} & \quad \text{L} & \\
\text{L} & \quad \text{L} & \\
\end{align*}
\]

The normalized Laplacian can determine if a graph is bipartite, namely a graph is bipartite if and only if the spectrum is symmetric around 1.
Using spectrum to count edges

\(A \) The adjacency matrix can determine the number of edges, namely it is half of the sum of squares of the eigenvalues.

\(L \) The (combinatorial) Laplacian can determine the number of edges, namely it is the sum of the eigenvalues.

\(\mathcal{L} \) The normalized Laplacian cannot determine the number of edges only by the spectrum. For example the following graphs are cospectral:
Finding cospectral graphs

By finding cospectral graphs we can understand what properties that a particular spectrum of a matrix cannot detect.
Finding cospectral graphs

By finding cospectral graphs we can understand what properties that a particular spectrum of a matrix cannot detect.

A For the adjacency matrix there has been a lot of work done. One of the most important tools is switching (Godsil-McKay).
Finding cospectral graphs

By finding cospectral graphs we can understand what properties that a particular spectrum of a matrix cannot detect.

\[A\] For the adjacency matrix there has been a lot of work done. One of the most important tools is switching (Godsil-McKay).

\[L\] Very little has been done. There are constructions of exponentially large families of connected graphs which are mutually cospectral.
Finding cospectral graphs

By finding cospectral graphs we can understand what properties that a particular spectrum of a matrix cannot detect.

\textbf{A} For the adjacency matrix there has been a lot of work done. One of the most important tools is switching (Godsil-McKay).

\textbf{L} Very little has been done. There are constructions of exponentially large families of connected graphs which are mutually cospectral.

\textbf{C} Known cospectral graphs are some regular graphs and some bipartite graphs. Not much is known on how to generate cospectral graphs . . .
Finding cospectral graphs

By finding cospectral graphs we can understand what properties that a particular spectrum of a matrix cannot detect.

\[A \] For the adjacency matrix there has been a lot of work done. One of the most important tools is switching (Godsil-McKay).

\[L \] Very little has been done. There are constructions of exponentially large families of connected graphs which are mutually cospectral.

\[L \] Known cospectral graphs are some regular graphs and some bipartite graphs. Not much is known on how to generate cospectral graphs . . . until now.
Let G and H be the graphs of the type shown below, where for G we have p is adjacent to b_1, \ldots, b_k and q is adjacent to b_{k+1}, \ldots, b_m; and for G we have p is adjacent to b_1, \ldots, b_ℓ and q is adjacent to $b_{\ell+1}, \ldots, b_m$. Further the b_i all have common neighbors (except possibly p and q). Then G and H are cospectral for the normalized Laplacian.
Basic tools and notation

We will use **harmonic eigenvectors** to show that the graphs are cospectral. Given an eigenvector x, i.e., $Lx = \lambda x$, then the harmonic eigenvector is $y = D^{-1/2}x$ which becomes $(D - A)y = \lambda Dy$ or

$$
\sum_{u \sim v} y(u) = (1 - \lambda)y(v)d(v).
$$

Two harmonic eigenvectors y_1 and y_2 are orthogonal if $y_2^*Dy_1 = 0$ (i.e., the eigenvectors are orthogonal).
Basic tools and notation

We will use **harmonic eigenvectors** to show that the graphs are cospectral. Given an eigenvector x, i.e., $\mathcal{L}x = \lambda x$, then the harmonic eigenvector is $y = D^{-1/2}x$ which becomes $(D - A)y = \lambda Dy$ or

$$\sum_{u \sim v} y(u) = (1 - \lambda)y(v)d(v).$$

Two harmonic eigenvectors y_1 and y_2 are orthogonal if $y_2^*Dy_1 = 0$ (i.e., the eigenvectors are orthogonal).

We use $e[v]$ to denote the vector which is 1 at vertex v and 0 otherwise.

We let s denote the degree of the b_i.

Proof (assuming the b_i induce an empty graph)

$$\sum_{u \sim v} y(u) = (1 - \lambda) y(v) d(v).$$
Proof (assuming the b_i induce an empty graph)

$$\sum_{u \sim v} y(u) = (1 - \lambda)y(v)d(v).$$

For $\lambda = 1$ we have:

- $e[b_1] - e[b_i]$ for $2 \leq i \leq k - 1$
- $e[b_m] - e[b_i]$ for $k \leq i \leq m - 1$
Proof (assuming the b_i induce an empty graph)

$$\sum_{u \sim v} y(u) = (1 - \lambda)y(v)d(v).$$

For $\lambda = 1$ we have:

- $e[b_1] - e[b_i]$ for $2 \leq i \leq k - 1$
- $e[b_m] - e[b_i]$ for $k \leq i \leq m - 1$

For $\lambda = 1 - 1/\sqrt{s}$ we have:

$$y_1 = (m - k)(e[b_1] + \cdots + e[b_k]) - k(e[b_{k+1}] + \cdots + e[b_m]) + \sqrt{s}(m - k)e[p] - \sqrt{ske}[q].$$
Proof (assuming the b_i induce an empty graph)

\[\sum_{u \sim v} y(u) = (1 - \lambda) y(v) d(v). \]

For $\lambda = 1$ we have:

\[e[b_1] - e[b_i] \quad \text{for } 2 \leq i \leq k - 1 \]
\[e[b_m] - e[b_i] \quad \text{for } k \leq i \leq m - 1 \]

For $\lambda = 1 - 1/\sqrt{s}$ we have:

\[y_1 = (m - k)(e[b_1] + \cdots + e[b_k]) \]
\[-k(e[b_{k+1}] + \cdots + e[b_m]) \]
\[+\sqrt{s(m - k)e[p]} - \sqrt{ske[q]}. \]

For $\lambda = 1 + 1/\sqrt{s}$ we have:

\[y_2 = (m - k)(e[b_1] + \cdots + e[b_k]) \]
\[-k(e[b_{k+1}] + \cdots + e[b_m]) \]
\[-\sqrt{s(m - k)e[p]} + \sqrt{ske[q]}. \]
Proof (assuming the b_i induce an empty graph)

The remaining harmonic eigenvectors are orthogonal to:

$$
\mathbf{e}[b_1] - \mathbf{e}[b_i] \quad \text{for} \quad 2 \leq i \leq k - 1,
$$
$$
\mathbf{e}[b_m] - \mathbf{e}[b_i] \quad \text{for} \quad k \leq i \leq m - 1,
$$

$$
\frac{1}{2}(y_1 + y_2) = (m - k)(\mathbf{e}[b_1] + \cdots + \mathbf{e}[b_k]) - k(\mathbf{e}[b_{k+1}] + \cdots + \mathbf{e}[b_m]),
$$

$$
\frac{1}{2\sqrt{s}}(y_1 - y_2) = (m - k)e(p) - ke(q).
$$
Proof (assuming the b_i induce an empty graph)

The remaining harmonic eigenvectors are orthogonal to:

- $\mathbf{e}[b_1] - \mathbf{e}[b_i]$ for $2 \leq i \leq k - 1$,
- $\mathbf{e}[b_m] - \mathbf{e}[b_i]$ for $k \leq i \leq m - 1$,

$$\frac{1}{2} (\mathbf{y}_1 + \mathbf{y}_2) = (m - k)(\mathbf{e}[b_1] + \cdots + \mathbf{e}[b_k]) - k(\mathbf{e}[b_{k+1}] + \cdots + \mathbf{e}[b_m]),$$

$$\frac{1}{2\sqrt{s}} (\mathbf{y}_1 - \mathbf{y}_2) = (m - k)\mathbf{e}(p) - k\mathbf{e}(q).$$

In particular, if \mathbf{z} is one of the remaining harmonic eigenvectors then it is constant on the b_i; and $\mathbf{z}(p) = \mathbf{z}(q)$.
Proof (assuming the b_i induce an empty graph)

If a harmonic eigenvector is constant on the b_i and $z(p) = z(q)$, then it is a harmonic eigenvector for both G and H.

In particular, the remaining harmonic eigenvectors are the same for both graphs, and so the graphs are cospectral. □
Proof (assuming the b_i induce an empty graph)

If a harmonic eigenvector is constant on the b_i and $z(p) = z(q)$, then it is a harmonic eigenvector for both G and H.

In particular, the remaining harmonic eigenvectors are the same for both graphs, and so the graphs are cospectral. □
Another example

The approach that we used can establish other examples of cospectral graphs. As an example, the following are cospectral.
A cospectral family of graphs – Fuzzy balls

We can now form large families of graphs all of which are mutually cospectral.

For \(m_1 + m_2 + \ldots + m_k = n \), let \(FB(m_1, m_2, \ldots, m_k) \) be the graph on \(n + k \) vertices \(b_1, \ldots, b_n, v_1, \ldots, v_k \) where the \(b_i \) induce a complete graph, each \(v_i \) is adjacent to exactly \(m_i \) vertices and each \(b_i \) is adjacent to exactly one of the \(v_i \).
A cospectral family of graphs – Fuzzy balls

We can now form large families of graphs all of which are mutually cospectral.

For $m_1 + m_2 + \ldots + m_k = n$, let $FB(m_1, m_2, \ldots, m_k)$ be the graph on $n + k$ vertices $b_1, \ldots, b_n, v_1, \ldots, v_k$ where the b_i induce a complete graph, each v_i is adjacent to exactly m_i vertices and each b_i is adjacent to exactly one of the v_i.

By swapping $FB(m_1, m_2, \ldots, m_k)$ is cospectral with $FB(m_1 + m_i - 1, m_2, \ldots, m_{i-1}, 1, m_{i+1}, \ldots, m_k)$.
A cospectral family of graphs – Inflated stars

For $m_1 + m_2 + \ldots + m_k = n$, let $IS(m_1, m_2, \ldots, m_k)$ be the graph on $n + k + 1$ vertices $a, b_1, \ldots, b_n, v_1, \ldots, v_k$ where a and the b_i induce a star graph with a as the central vertex, each v_i is adjacent to exactly m_i vertices and each b_i is adjacent to exactly one of the v_i.

By swapping $IS(m_1, m_2, \ldots, m_k)$ is cospectral with $IS(m_1 + m_i - 1, m_2, \ldots, m_{i-1}, 1, m_{i+1}, \ldots, m_k)$.

![Graphs](image-url)
Comments about the spectrum of the normalized Laplacian

Edge swapping was discovered by looking at cospectral graphs for graphs with ≤ 8 vertices, generated using SAGE. There are other cospectral graphs not related by swapping.

- The spectrum of L cannot detect if a graph is regular.

- A graph and a subgraph can be cospectral for L.
Thank you!