Epidemic outbreaks in networks with equitable or almost-equitable partitions

Bonaccorsi, Ottaviano, Mugnolo, and de Pellegrini

Presented by Kate Lorenzen
April 10, 2017
Epidemic outbreaks

- Model an outbreak on a graph
- Vertices are people or computers
- Edges are connections

- Vertex can either be infected or healthy (susceptible to infection)
Epidemic outbreaks

Assumptions

- Stable social communities (no migration)
- Continuous-time Markovian SIS model

What we want to understand

- For a finite system, always converge to an all healthy state
- **Epidemic threshold** where the time to convergence grows exponentially or decreases exponentially
Effective Spreading Rate

- At each time t, each vertex has a probability of getting infected $p_i(t)$
- The rate at which the infection spreads is β
- The rate at which a vertex recovers is δ
- Effective spreading rate $\tau = \frac{\beta}{\delta}$
Epidemic Threshold

- Epidemic threshold τ_c is critical value of τ
- If $\tau > \tau_c$, then unrealistic long time before the healthy state is reached
- If $\tau < \tau_c$, then infection vanishes in exponentially fast time
- For a given graph, we know that $\frac{1}{\lambda_1(A)}$ is a lower bound for τ_c
Equitable partitions

- Quotient matrix: same spectral radius as adjacency
- Allows us find estimate for threshold more efficiently

- Partition vertices of G into V_1, \ldots, V_n where each V_i induces a regular subgraph and the vertices in V_i have the same number of neighbors in each V_j
Equitable partitions, cont.

\[Q = \begin{pmatrix}
\deg V_1 & \cdots & \frac{e(V_1,V_n)}{\sqrt{|V_1||V_n|}} \\
\vdots & \ddots & \vdots \\
\frac{e(V_1,V_n)}{\sqrt{|V_1||V_n|}} & \cdots & \deg V_n
\end{pmatrix} = D + B \]

\[\lambda_1(Q) \leq \lambda_1(D) + \lambda_1(B) = \max (\deg V_i) + \lambda_1(B) \]

Since \(\lambda_1(A) = \lambda_1(Q) \), it follows \(\tau_c \geq \min_i \frac{1}{\deg(V_i) + \lambda_1(B)} \)
Almost-equitable partitions

- We had an equitable partition and then added edges inside the sets.
- We had an equitable partition, then removed edges inside the set.

- Note that removing and adding edges only happens within the partitions
Added Edges

- Let G be a graph that has an equitable partition
- Let G' be a copy of G with added edges.
- $A' = A + R$
- $\lambda_1(A') \leq \lambda_1(A) + \lambda_1(R)$
Investigation of $\lambda_1(R)$

- Let G_i be the graph induced by the edges added within each partition. Let the number of edges of each G_i be e_i. Let the number of vertices of each V_i be k_i.

- Claim: $\lambda_1(R) \leq \max_i \left(\min \left(\sqrt{\frac{2e_i(k_i-1)}{k_i}}, \Delta(G_i) \right) \right)$
Proof of Claim: $\lambda_1(R) \leq \max_i \left(\min \left(\sqrt[2e_i(k_i-1)]{\frac{k_i}{k_i}}, \Delta(G_i) \right) \right)$

- From a result that bounds zeros of a polynomial using the Holder inequality, we know that all the eigenvalues of R are in the interval

 $$-\sqrt[2e_i(k_i-1)]{\frac{k_i}{k_i}} \leq \lambda(R_i) \leq \sqrt[2e_i(k_i-1)]{\frac{k_i}{k_i}}$$

- By Gerschgorin’s Theorem, we know that $\lambda_1 \leq \Delta(G)$
Epidemic Threshold of Almost-Equitable Partitions

\[\tau_c \geq \frac{1}{\max_i(\text{deg}_G(V_i)) + \lambda_1(B) + \max_i \left(\min \left(\sqrt{\frac{2e_i(k_i - 1)}{k_i}}, \Delta(G_i) \right) \right)} \]
Removing Edges

- Let G be a graph that has an equitable partition.
- Let G' be a copy of G with removed edges.
- $R^+ A' = A$
- $\lambda_1(A') \leq \lambda_1(A)$

So, $\tau_c \geq \frac{1}{\max_i (\deg_G(V_i)) + \lambda_1(B)}$
Comparison of two bounds

Remove edges

\[\tau_c \geq \frac{1}{\max_i (\deg_G(V_i)) + \lambda_1(B)} \]

Add edges

\[\tau_c \geq \frac{1}{\max_i (\deg_G(V_i)) + \lambda_1(B) + \max_i \left(\min \left(\sqrt{\frac{2e_i(k_i - 1)}{k_i}}, \Delta(G_i) \right) \right)} \]
Summary/Good exam questions?

- We can estimate the epidemic threshold of a network using the largest eigenvalue
- We can estimate the largest eigenvalue in equitable partitions
- We can estimate the largest eigenvalue in almost-equitable partitions
Work Cited