Average mixing of continuous quantum walks

Juergen Kritschgau

Department of Mathematics
Iowa State University
Ames, IA 50011
jkritsch@iastate.edu

April 7, 2017
This is a presentation of:

Average mixing of continuous quantum walks, *Journal of Combinatorial Theory, Series A* June 2013, by Chris Godsil
Outline

1) Background and Definitions, particularly, the average mixing matrix (AMM)
2) How to work with the AMM
3) The AMM of paths
4) The AMM and cospectral vertices
Let X be a graph on $V(X) = \{1, \ldots, n\}$ vertices with adjacency matrix A. We will be considering the operator

$$H(t) = \exp(\imath tA) = \sum_{k=0}^{\infty} \frac{1}{k!} (\imath tA)^k$$

where $t \in \mathbb{R}$. The idea is that $H(t)$ determines a \textbf{continuous quantum walk} by associating the standard basis vector $e_i \in \mathbb{C}^n$ with the vertex i. Doing so, yields that

$$|e_u^T H(t) e_v|^2$$

is the probability that the quantum walk starting at vertex v is at vertex u at time t.
The Schur Product of two $n \times m$ matrices A, B, denoted by $A \circ B$, is the entry-wise product of A and B. Then define the following:

$$M_X(t) := H(t) \circ H(-t)$$

$$\hat{M}_X := \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} M_X(t) dt$$

The matrix \hat{M}_X is the average mixing matrix of X. The goal is to relate properties of $\hat{M}_X(t)$ to X.
Properties of the Matrix Exponential

There are a few properties of the matrix exponential that are useful for us. Let B, C be complex square matrices.

1) If B is skew hermitian, then $\exp(B)$ is unitary.
2) If $BC = CB$, then $\exp(B + C) = \exp(B)\exp(C)$.
3) If B is idempotent, then
 \[\exp B = \sum_{k=0}^{\infty} \frac{1}{k!} B^k = I + \left(\sum_{k=1}^{\infty} \frac{1}{k!} \right) B = I + (e - 1)P \]

Property 1) gives us that $H(t) = \exp(\imath tA)$ is unitary in virtue of

\[(\imath tA)^* = -\imath tA \]
Recall that the spectral decomposition of A is given by

$$A = \sum_r \theta_r E_r$$

where E_r is idempotent. Then we have:

$$H(t) = \sum_r \exp(\imath t \theta_r) E_r$$

$$M_X(t) = \sum_r E_r \circ E_r + 2 \sum_{r \leq s} \cos((\theta_r - \theta_s)t) E_r \circ E_s$$

Lemma

If $A = \sum_r \theta_r E_r$, then

$$\hat{M}_X = \sum_r E_r \circ E_r.$$
Lemma

If X is connected, then all entries of \hat{M}_X are positive.

Proof.

Notice that $E_r \circ E_r$ is nonnegative.
Suppose $(\hat{M}_X)_{u,v} = 0$. This implies $(E_r \circ E_r)_{u,v} = 0$ for all r.
Furthermore, this implies that $(E_r)_{u,v} = 0$ for all r.
Recall that A is a linear combination of E_r and $E_i E_j = 0$ for $i \neq j$.
Therefore, $(A^k)_{u,v} = 0$ for all k, and X is disconnected. □
Lemma

The idempotents of E_1, \ldots, E_n in the spectral decomposition of P_n are given by

$$(E_r)_{j,k} = \frac{2}{n+1} \sin \left(\frac{jr \pi}{n+1} \right) \sin \left(\frac{kr \pi}{n+1} \right).$$

Proof.

Recall that the adjacency eigenvalues of P_n are $2 \cos(\beta)$ with eigenvectors $z(\beta) = \begin{pmatrix} \sin(\beta) \\ \sin(2\beta) \\ \vdots \\ \sin(n\beta) \end{pmatrix}$ where β ranges over

$$\beta = \frac{\pi r}{n+1}, \ r \in [n].$$

To be continued…
If λ is a simple eigenvalue with vector x, then $\frac{1}{x^Tx}xx^T$ is the projection onto the eigenspace of λ.

proof continued.

Using the fun fact, we get that $\frac{1}{z(\beta)^Tz(\beta)} = \frac{2}{n+1}$ and

$$(z(\beta)z(\beta)^T)_{j,k} = \sin(j\beta)\sin(k\beta) = \sin\left(\frac{jr\pi}{n+1}\right)\sin\left(\frac{kr\pi}{n+1}\right).$$
Lemma

If E_1, \ldots, E_n are idempotents for P_n, then

$$\hat{M}_{P_n} = \sum_r E_r \circ E_r = \frac{1}{2n+2}(2J + I + J).$$

Proof.

By the previous Lemma we have

$$(E_r \circ E_r)_{j,k} = \frac{4}{(n+1)^2} \sin^2 \left(\frac{j \pi}{n+1} \right) \sin^2 \left(\frac{k \pi}{n+1} \right).$$

Using some trigonometry we get...
proof continued.

\[(n + 1)^2 (E_r \circ E_r)_{j,k} =
1 - \cos \left(\frac{2jr\pi}{n+1}\right) - \cos \left(\frac{2kr\pi}{n+1}\right) + \frac{1}{2} \cos \left(\frac{2(j+k)r\pi}{n+1}\right) + \frac{1}{2} \cos \left(\frac{2(j-k)r\pi}{n+1}\right)\].

Summing across \(r\) and using the fact that \(\sum_{r=1}^{n} \cos \left(\frac{2lr\pi}{n+1}\right) = -1\), the right hand side (RHS) evaluates to

\[
RHS = \begin{cases}
3(n + 1)/2 & j = k; \\
3(n + 1)/2 & j + k = n + 1; \\
2n + 2 & j = k, j + k = n + 1; \\
n + 1 & \text{otherwise.}
\end{cases}
\]

\[\square\]
An Example: P_3

Recall that the eigenvalues of P_3 are $0, \sqrt{2}, -\sqrt{2}$ with corresponding vectors $[1, 0, -1]^T, [1, \sqrt{2}, 1]^T, [1, -\sqrt{2}, 1]^T$. These are all simple eigenvalues, so the corresponding projections are

$$E_1 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} \quad E_2 = \begin{pmatrix} 1 & \sqrt{2} & 1 \\ \sqrt{2} & 2 & \sqrt{2} \\ 1 & \sqrt{2} & 1 \end{pmatrix}$$

$$E_3 = \begin{pmatrix} 1 & -\sqrt{2} & 1 \\ -\sqrt{2} & 2 & -\sqrt{2} \\ 1 & -\sqrt{2} & 1 \end{pmatrix}$$

Then

$$\hat{M}_{P_3} = E_1/2 + E_2/4 + E_3/4 = \begin{pmatrix} 3/8 & 2/8 & 3/8 \\ 2/8 & 4/8 & 2/8 \\ 3/8 & 2/8 & 3/8 \end{pmatrix}$$
Theorem

Let X be a graph with vertices u and v, and let E_1, \ldots, E_m be the idempotents in the spectral decomposition of $A(X)$. TFAE:

1) $(A^k)_{u,u} = (A^k)_{v,v}$ for all $k \geq 0$
2) $\|E_re_u\|^2 = \|E_re_v\|^2$
3) The graphs $X - u$ and $X - v$.

If any of the conditions above hold for vertices u and v, we say that u and b are cospectral. Furthermore, if $E_re_u = \pm E_re_v$ for all r, then we say that u and v are strongly cospectral.

Lemma

If u and V are vertices in X and the eigenvalues of X are all simple, then U and v are strongly cospectral if and only if they are cospectral.
Theorem

Let \(\hat{M}_X \) be the average mixing matrix of the graph \(X \). Then vertices \(u \) and \(v \) are strongly cospectral if and only if \(\hat{M}_X(e_v - e_u) = 0 \).

Proof.

Some algebra shows that if \(N \) is PSD and \(N(e_u - e_v) = 0 \), then \(N[v, u](e_u - e_v) = 0 \).

\(\hat{M}_X(e_u - e_v) = 0 \) implies

\[
0 = (e_u - e_v)^T \hat{M}_X(e_u - e_v) = \sum_r (e_u - e_v)^T (E_r \circ E_r)(e_u - e_v).
\]

Notice that each summand \(E_r \circ E_r \) is PSD, so we have

\[
(E_r \circ E_r)(e_u - e_v) = 0 \quad \text{for all} \quad r.
\]

This implies

\[
((E_r)_{u,u})^2 = ((E_r)_{u,v})^2 = ((E_r)_{v,v})^2.
\]

Applying Cauchy-Schwarz gives that

\[
E_re_u = \pm E_re_v.
\]
Returning to our Example

Recall that the average mixing matrix of P_3 is

$$\hat{M}_{P_3} = \begin{pmatrix} \frac{3}{8} & \frac{2}{8} & \frac{3}{8} \\ \frac{2}{8} & \frac{4}{8} & \frac{2}{8} \\ \frac{3}{8} & \frac{2}{8} & \frac{3}{8} \end{pmatrix}.$$

The first and last row are equal, and P_3 has all simple eigenvalues. Therefore, $P_3 - v_1$ and $P_3 - v_3$ are cospectral.
Thank you!