Erdős–Ko–Rado for Permutations

O’Neill Kingston

Spectral Graph Theory
Math 595

April 3rd, 2017
A new proof of the Erdős–Ko–Rado theorem for intersecting families of permutations

Chris Godsil, Karen Meagher
Outline:

Definitions
Theorem
Proof
Theorem: (Erdős, Ko, Rado, 1961)

Let k, n be positive integers with $n > 2k$. If A is a family of k-subsets of \{1, 2, \ldots, n\} such that any two sets from A have non-trivial intersection, then $|A| \leq \binom{n-1}{k-1}$. Moreover, we have equality if and only if A is the collection of all k-subsets containing a fixed $i \in \{1, 2, \ldots, n\}$.

Proof.

Exercise.
Theorem: (Erdős, Ko, Rado, 1961)

Let k, n be positive integers with $n > 2k$. If A is a family of k-subsets of $\{1, 2, \ldots, n\}$ such that any two sets from A have non-trivial intersection, then $|A| \leq \binom{n-1}{k-1}$. Moreover, we have equality if and only if A is the collection of all k-subsets containing a fixed $i \in \{1, 2, \ldots, n\}$.

Proof.

Exercise.
$n = 4, k = 2$

Illustration courtesy of Wikipedia.
For S_n the symmetric group on $\{1, 2, \ldots, n\}$, permutations $\pi, \sigma \in S_n$ are said to be *intersecting* if $\pi(i) = \sigma(i)$ for some $i \in \{1, 2, \ldots, n\}$.

There is an analogous “good guess” for maximum families of intersecting permutations:

$$S_{i,j} = \{ \pi \in S_n : \pi(i) = j \}, \quad i, j \in \{1, 2, \ldots, n\}$$

We may think of these sets as the cosets of the stabilizer of point i with respect to the action of S_n on $\{1, 2, \ldots, n\}$.

e.g. $S_{n,n}$ is the set of all permutations fixing n.
For \(S_n \) the symmetric group on \(\{1, 2, \ldots, n\} \), permutations \(\pi, \sigma \in S_n \) are said to be intersecting if \(\pi(i) = \sigma(i) \) for some \(i \in \{1, 2, \ldots, n\} \).

There is an analogous “good guess” for maximum families of intersecting permutations:

\[
S_{i,j} = \{ \pi \in S_n : \pi(i) = j \}, \quad i, j \in \{1, 2, \ldots, n\}
\]

We may think of these sets as the cosets of the stabilizer of point \(i \) with respect to the action of \(S_n \) on \(\{1, 2, \ldots, n\} \).

e.g. \(S_{n,n} \) is the set of all permutations fixing \(n \).
For S_n the symmetric group on $\{1, 2, \ldots, n\}$, permutations $\pi, \sigma \in S_n$ are said to be *intersecting* if $\pi(i) = \sigma(i)$ for some $i \in \{1, 2, \ldots, n\}$.

There is an analogous “good guess” for maximum families of intersecting permutations:

$$S_{i,j} = \{ \pi \in S_n : \pi(i) = j \}, \quad i, j \in \{1, 2, \ldots, n\}$$

We may think of these sets as the cosets of the stabilizer of point i with respect to the action of S_n on $\{1, 2, \ldots, n\}$.

e.g. $S_{n,n}$ is the set of all permutations fixing n.
Theorem: (Cameron and Ku, Larose and Malvenuto, Godsil and Meagher)

Let $n \geq 2$. If $S \subseteq S_n$ is an intersecting family of permutations, then:

(a) $|S| \leq (n - 1)!$
(b) if $|S| = (n - 1)!$, then S is a coset of a stabilizer of a point.

Proof.

Various techniques.

One of them the topic of this paper!
Theorem: (Cameron and Ku, Larose and Malvenuto, Godsil and Meagher)

Let $n \geq 2$. If $S \subseteq S_n$ is an intersecting family of permutations, then:

(a) $|S| \leq (n - 1)!$

(b) if $|S| = (n - 1)!$, then S is a coset of a stabilizer of a point.

Proof.

Various techniques.
Theorem: (Cameron and Ku, Larose and Malvenuto, Godsil and Meagher)

Let $n \geq 2$. If $S \subseteq S_n$ is an intersecting family of permutations, then:

(a) $|S| \leq (n - 1)!$
(b) if $|S| = (n - 1)!$, then S is a coset of a stabilizer of a point.

Proof.

Various techniques.

One of them the topic of this paper!
To prove part (a) of the theorem, we employ what is called the *clique-coclique bound*.

This was originally proven by Philippe Delsarte in 1973 using association schemes.

Godsil and Meagher provide a new proof via association schemes.

For more information on association schemes, please enjoy Math 605 with Dr. Song.
To prove part (a) of the theorem, we employ what is called the *clique-coclique bound*.

This was originally proven by Philippe Delsarte in 1973 using association schemes.

Godsil and Meagher provide a new proof via association schemes.

For more information on association schemes, please enjoy Math 605 with Dr. Song.
To prove part (a) of the theorem, we employ what is called the *clique-co clique bound*.

This was originally proven by Philippe Delsarte in 1973 using association schemes.

Godsil and Meagher provide a new proof via association schemes.

For more information on association schemes, please enjoy Math 605 with Dr. Song.
To prove part (a) of the theorem, we employ what is called the *clique-coclique bound*.

This was originally proven by Philippe Delsarte in 1973 using association schemes.

Godsil and Meagher provide a new proof via association schemes.

For more information on association schemes, please enjoy Math 605 with Dr. Song.
Theorem: (Cameron, Ku, 2003)

Let G be a vertex-transitive graph of order n. Suppose that T is a subset of $V(G)$ and that the largest clique contained in T has size $\frac{|T|}{m}$. Then any clique S in G satisfies $|S| \leq \frac{n}{m}$. Equality implies that $|S \cap T| = \frac{|T|}{m}$.
Proof.

Count pairs \((v, \varphi)\) where \(v \in S\), \(\varphi \in \text{Aut}(G)\), and \(\varphi(v) \in T\). For each \(w \in T\) there are \(\frac{|\text{Aut}(G)|}{n}\) choices of \(\varphi\) so that \(\varphi(v) = w\), so the number of pairs is \(|S| \cdot |T| \cdot \frac{|\text{Aut}(G)|}{n}\). For any \(\varphi \in \text{Aut}(G)\), however, we also have \(|\varphi(S) \cap T| \leq \frac{|T|}{m}\) since \(\varphi(S) \cap T\) is a clique in \(T\); thus the number of pairs is at most \(|\text{Aut}(G)| \cdot \frac{|T|}{m}\). So

\[
|S| \cdot |T| \cdot \frac{|\text{Aut}(G)|}{n} \leq |\text{Aut}(G)| \cdot \frac{|T|}{m}
\]

and

\[
|S| \leq \frac{n}{m}.
\]

In the case of equality, \(|\varphi(S) \cap T| = \frac{|T|}{m}\) for all \(\varphi \in \text{Aut}(G)\), so choose \(\varphi = \text{id}\).
Corollary: (The clique-coclique bound)

Let C be a clique and A a coclique in a vertex-transitive graph of order n. Then $|C| \cdot |A| \leq n$. Equality implies that $|C \cap A| = 1$.
The derangement graph $P(n)$

For positive integer n, we define $P(n)$ to be the graph whose vertex set is S_n and with edge $\pi\sigma$, for $\pi, \sigma \in S_n$, if and only if π and σ are non-intersecting, that is $\pi(i) \neq \sigma(i)$ for all $i \in \{1, 2, \ldots, n\}$.

$P(n)$ is called the derangement graph because it is a Cayley graph generated by the complete set of derangements of $\{1, 2, \ldots, n\}$: all permutations with no fixed points.

Note: Cayley graphs are vertex-transitive!

A small example:
The derangement graph $P(n)$

For positive integer n, we define $P(n)$ to be the graph whose vertex set is S_n and with edge $\pi \sigma$, for $\pi, \sigma \in S_n$, if and only if π and σ are non-intersecting, that is $\pi(i) \neq \sigma(i)$ for all $i \in \{1, 2, \ldots, n\}$

$P(n)$ is called the derangement graph because it is a Cayley graph generated by the complete set of derangements of $\{1, 2, \ldots, n\}$: all permutations with no fixed points.

Note: Cayley graphs are vertex-transitive!

A small example:
The derangement graph $P(n)$

For positive integer n, we define $P(n)$ to be the graph whose vertex set is S_n and with edge $\pi\sigma$, for $\pi, \sigma \in S_n$, if and only if π and σ are non-intersecting, that is $\pi(i) \neq \sigma(i)$ for all $i \in \{1, 2, \ldots, n\}$

$P(n)$ is called the derangement graph because it is a Cayley graph generated by the complete set of derangements of $\{1, 2, \ldots, n\}$: all permutations with no fixed points.

Note: Cayley graphs are vertex-transitive!

A small example:
The derangement graph $P(n)$

For positive integer n, we define $P(n)$ to be the graph whose vertex set is S_n and with edge $\pi \sigma$, for $\pi, \sigma \in S_n$, if and only if π and σ are non-intersecting, that is $\pi(i) \neq \sigma(i)$ for all $i \in \{1, 2, \ldots, n\}$

$P(n)$ is called the derangement graph because it is a Cayley graph generated by the complete set of derangements of $\{1, 2, \ldots, n\}$: all permutations with no fixed points.

Note: Cayley graphs are vertex-transitive!

A small example:
Theorem: clique number of $P(n)$

$\omega(P(n))$, the size of a maximum clique in $P(n)$, is n.

Proof.

Exercise.
Theorem: clique number of $P(n)$

$\omega(P(n))$, the size of a maximum clique in $P(n)$, is n.

Proof.

Exercise.
Theorem: independence number of $P(n)$

$\alpha(P(n))$, the size of a maximum independent set in $P(n)$, is $(n - 1)!$.

Proof.

Since $P(n)$ is vertex-transitive, the clique-coclique bound holds:

$$\alpha(P(n)) \cdot \omega(P(n)) \leq |P(n)|$$

and so

$$\alpha(P(n)) \leq \frac{n!}{n} = (n - 1)!.$$
Theorem: independence number of $P(n)$

$\alpha(P(n))$, the size of a maximum independent set in $P(n)$, is $(n - 1)!$.

Proof.

Since $P(n)$ is vertex-transitive, the clique-coclique bound holds:

$$\alpha(P(n)) \cdot \omega(P(n)) \leq |P(n)|$$

and so

$$\alpha(P(n)) \leq \frac{n!}{n} = (n - 1)!.$$
This completes the proof of part (a) of Erdős–Ko–Rado for intersecting families of permutations.

Proving part (b) (that for intersecting family of permutations $S \subseteq S_n$ if $|S| = (n - 1)!$, then S is a coset of a stabilizer of a point) is not easy:

Godsil and Meagher make use of association schemes, $[n - 1, 1]$-modules, character theory and several pages of hardcore linear algebra.
This completes the proof of part (a) of Erdős–Ko–Rado for intersecting families of permutations.

Proving part (b) (that for intersecting family of permutations $S \subseteq S_n$ if $|S| = (n - 1)!$, then S is a coset of a stabilizer of a point) is not easy:

Godsil and Meagher make use of association schemes, $[n - 1, 1]$-modules, character theory and several pages of hardcore linear algebra.
This completes the proof of part (a) of Erdős–Ko–Rado for intersecting families of permutations.

Proving part (b) (that for intersecting family of permutations $S \subseteq S_n$ if $|S| = (n - 1)!$, then S is a coset of a stabilizer of a point) is not easy:

Godsil and Meagher make use of association schemes, $[n - 1, 1]$-modules, character theory and several pages of hardcore linear algebra.
The abstract algebraic proof, not presented here, is also gross.

What is this, Math 496/596, Algebraic Graph Theory?

Some spectral results on $P(n)$:
The abstract algebraic proof, not presented here, is also gross.

What is this, Math 496/596, Algebraic Graph Theory?

Some spectral results on $P(n)$:
The abstract algebraic proof, not presented here, is also gross.

What is this, Math 496/596, Algebraic Graph Theory?

Some spectral results on $P(n)$:
Lemma: (Godsil and Meagher)

For all positive integers n, D_n and $-\frac{D_n}{n-1}$ are eigenvalues of $P(n)$, where D_n is the derangement number of n.

Proof.

Take independent set $S_{n,n}$ as previously defined and note that $\{S_{n,n}, V(P(n)) - S_{n,n}\}$ is the orbit partition of $S_1 \times S_{n-1}$ acting on $P(n)$, and is thus an equitable partition. The adjacency matrix with respect to this partition is

$$
\begin{pmatrix}
0 & D_n \\
\frac{D_n}{n-1} & D_n - \frac{D_n}{n-1}
\end{pmatrix}
$$

which has eigenvalues D_n and $-\frac{D_n}{n-1}$, and so $P(n)$ does as well.
Lemma: (Godsil and Meagher)

For all positive integers \(n \), \(D_n \) and \(-\frac{D_n}{n-1} \) are eigenvalues of \(P(n) \), where \(D_n \) is the derangement number of \(n \).

Proof.

Take independent set \(S_{n,n} \) as previously defined and note that \(\{S_{n,n}, V(P(n)) - S_{n,n}\} \) is the orbit partition of \(S_1 \times S_{n-1} \) acting on \(P(n) \), and is thus an equitable partition. The adjacency matrix with respect to this partition is

\[
\begin{pmatrix}
0 & D_n \\
\frac{D_n}{n-1} & D_n - \frac{D_n}{n-1}
\end{pmatrix}
\]

which has eigenvalues \(D_n \) and \(-\frac{D_n}{n-1} \), and so \(P(n) \) does as well.
Moreover, both of these values are integers: as some may recall from Math 606 we have recurrence relation

\[D_n = (n - 1)(D_{n-1} + D_{n-2}) \]

\[\frac{D_n}{n-1} = -(D_{n-1} + D_{n-2}) \]

\(D_n \) is the regularity of \(P(n) \) and is thus its largest eigenvalue, and in 2007 Renteln showed that \(-\frac{D_n}{n-1} \) is its smallest.
Moreover, both of these values are integers: as some may recall from Math 606 we have recurrence relation

$$D_n = (n - 1)(D_{n-1} + D_{n-2})$$

$$- \frac{D_n}{n-1} = -(D_{n-1} + D_{n-2})$$

D_n is the regularity of $P(n)$ and is thus its largest eigenvalue, and in 2007 Renteln showed that $-\frac{D_n}{n-1}$ is its smallest.
Moreover, both of these values are integers: as some may recall from Math 606 we have recurrence relation

\[D_n = (n - 1)(D_{n-1} + D_{n-2}) \]

\[-\frac{D_n}{n-1} = -(D_{n-1} + D_{n-2}) \]

\(D_n \) is the regularity of \(P(n) \) and is thus its largest eigenvalue, and in 2007 Renteln showed that \(-\frac{D_n}{n-1} \) is its smallest.
Thank you!