1. First subtract $\frac{1}{2} \times$ row 1 from row 2 and $\frac{1}{3} \times$ row 1 from row 3 to obtain

$$
A = \begin{bmatrix}
60 & 30 & 20 \\
0 & 5 & 5 \\
0 & 5 & 5 \frac{1}{3}
\end{bmatrix}
$$

Then subtract row 2 from row 3 to make A upper triangular; collecting the multipliers below the diagonal gives L:

$$
L = \begin{bmatrix}
1 & 0 & 0 \\
\frac{1}{3} & 1 & 0 \\
\frac{1}{3} & 1 & 1
\end{bmatrix}
$$

$$
U = \begin{bmatrix}
60 & 30 & 20 \\
0 & 5 & 5 \\
0 & 0 & \frac{1}{3}
\end{bmatrix}
$$

To solve $Ax = b = [0; 0; 1]$, first do forward substitution to solve $Ly = b$. The solution is obviously $y_1 = y_2 = 0$, $y_3 = 1$. Performing back substitution to solve $Ux = y$ gives

$$
\frac{1}{3}x_3 = 1 \implies x_3 = 3 \\
5x_2 + 5x_3 = 0 \implies x_2 = -3 \\
60x_1 + 30x_2 + 20x_3 = 0 \implies x_1 = \frac{1}{2}
$$

2. For M we have the row and column sums

$$
0.1481 + 0.0740 = 0.2221 \\
+0.4445 + 0.2221 = 0.6666 \\
0.5926\ 0.2961
$$

The corresponding quantities for M^{-1} are $10^8 \times$

$$
0.2221 + 0.0740 = 0.2961 \\
+0.4445 + 0.1481 = 0.5926 \\
0.6666\ 0.2221
$$
The infinity-norm is the maximum row sum:

\[\|M\|_{\infty} = 0.6666 \quad \|M^{-1}\|_{\infty} = 0.5926 \times 10^8 \]

so \(\kappa_{\infty}(M) = 39502716 \).

The 1-norm is the maximum column sum:

\[\|M\|_1 = 0.5926 \quad \|M^{-1}\|_1 = 0.6666 \times 10^8 \]

so \(\kappa_1(M) = 39502716 \) too.

3. MatVecRO computes the matrix-vector product \(y = Ax \) by a row-oriented algorithm using dot products. (The comments are correct about the result, but not the method.) For each dot product it computes \(n \) products of pairs of scalars \((n \text{ flops}) \) and adds them \((n \text{ flops more}) \) for a total of \(2n \) flops. There are \(n \) dot products, making for \(2n^2 \) flops.

MatVecCO computes the same product by a column-oriented algorithm using saxpys. (It is correctly described by the comments.) Each time through the loop a column of \(A \) is multiplied by a component of \(x \) \((n \text{ flops}) \) and the result is added to \(y \) \((n \text{ flops}) \). The loop is repeated \(n \) times for a total of \(n(n + n) = 2n^2 \) flops.

4. The matrix \(A \) and vector \(b \) are

\[
A = \begin{bmatrix} -3 \\ 4 \end{bmatrix} \quad b = \begin{bmatrix} -5 \\ 5 \end{bmatrix}
\]

A rotation matrix \(G \) that makes \(A \) upper triangular is found by making the second component of \(GA \) zero \((s = \sin \theta, \ c = \cos \theta) \):

\[
G \cdot A = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} -3 \\ 4 \end{bmatrix} = \begin{bmatrix} -3c + 4s \\ 3s + 4c \end{bmatrix}
\]

From \(3 \sin \theta + 4 \cos \theta = 0 \) follows \(\cot \theta = -\frac{3}{4} \); thus \(\sin \theta = 1/\sqrt{1 + \cot^2 \theta} = 4/5 \) and \(\cos \theta = \sin \theta \cot \theta = -\frac{3}{5} \). Then \(A = QR \) with \(Q = G^T \) and \(R = [5, 0]^T \).

To solve the least squares problem, multiply the residual \(Ax - b \) by \(G \), obtaining

\[
GAx - Gb = Rx - Gb = \begin{bmatrix} 5 \\ 0 \end{bmatrix} x - \begin{bmatrix} 7 \\ 1 \end{bmatrix}
\]

The least squares solution is \(x^* = \frac{7}{5} \); the minimum residual is \(Ax^* - b = [4/5, 3/5] \), and its norm is 1.