A little over 1000 years ago in Baghdad, a court mathematician named Ibn Sahl investigated and solved the following problem:

Suppose a burning lens presents a flat face to the sun; what must be the shape of the other face that will focus all the rays at a single point?

Your task in this project is to re-derive his solution using two tools developed by European science 700 years after Ibn Sahl:

(i) Snel’s Law of refraction relates the angles made by incident and refracted light rays at an interface between two media.

(ii) Differential and Integral Calculus gives a general method to determine a curve from known properties of its tangent.

The lens is positioned as shown in the crude picture below. Its flat side, perpendicular to the x-axis, faces right. On the left the convex face of the lens is a surface of revolution generated by revolving a segment of a curve $y = f(x)$ about the x-axis. The sun’s rays enter the lens from the right, parallel to the x-axis, and are refracted to the point $F(0,0)$ at the coordinate origin.

1. [The solution to this problem is to be handed in Thursday, January 27; the results are needed by the solvers of parts 2, 3, and 4.] Draw a diagram showing a point $P(x_0,y_0)$ on the curve together with the normal line to the curve $y = f(x)$ at P and the incident and refracted rays at P. Show the x-intercept of the normal line at P as a point N on the x-axis. Label P, F, N and the angles of incidence and refraction.
Determine the Cartesian coordinates of N in terms of x_0, y_0 and the slope $m_0 = f'(x_0)$. Express the lengths of the segments PF and NF also in terms of x_0, y_0 and m_0.

2. Let n denote the index of refraction between air and glass, so that $n > 1$. Since light leaving the lens at P travels from glass to air, apply Snell’s Law in the form

$$\sin i = \frac{1}{n} \sin r. \quad (1)$$

Show that (1) implies

$$NF = n \cdot PF. \quad (2)$$

[One way to do this is to use the Law of Sines in the triangle FPN, together with the fact that the incident ray is parallel to the x-axis.]

3. Put the expressions derived in Problem 1 for NF and PF into (2), and write x, y, y' for x_0, y_0 and m_0, respectively. The result is a differential equation for y. Find the solution of this differential equation in implicit form in terms of x, y, the refractive index n and an integration constant C. [Substitute $y = xv$ to obtain a separable equation for v.]

4. Show that the solution derived in Problem 3 represents a family of hyperbolas, by putting it into the form

$$\frac{(x-f)^2}{a^2} - \frac{y^2}{b^2} = 1, \quad f^2 = a^2 + b^2. \quad (3)$$

To do this you must express a and b in terms of the refractive index n and the integration constant C. Then answer the following.

(a) What is the significance of the parameter f in Equation (3)?

(b) The hyperbolas (3) are not in standard position. Where are their vertices and foci?

(c) Ibn Sahl announced his solution in the form

$$\frac{f}{a} = n.$$

What does the quantity f/a represent in the geometry of the hyperbola? Verify that Ibn Sahl’s equation is valid for your solution.